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Resetting and termination of reentry in a loop-and-tail cardiac model
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Ventricular tachycardia is a type of cardiac arrhythmia that can be associated with a wave circulating around
in a loop. Because this rhythm is potentially fatal, its termination is highly desirable. Theoretical approaches
have suggested that discontinuity in the phase resetting response to electrical stimuli is indicative of the ability
for such termination. We investigate the usefulness of such theoretical predictions when the stimulus site is
located at some distance away from the reentrant loop, as would typically be the case during antitachycardia
pacing in the heart. We show that there exists a critical tail length below which termination of reentry occurs
over a range of stimulus timing values as predicted theoretically by a discontinuous window in the phase
resetting curve. Above this critical length, however, a paradoxical situation exists: termination of reentry
appears impossible, yet there is a point discontinuity in the phase resetting curve. These findings offer insight
into termination using a single stimulus in a loop-and-tail model, an important step toward understanding the

mechanism of antitachycardia pacing.
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I. INTRODUCTION

Reentrant cardiac arrhythmias occur when tissue is acti-
vated repeatedly by a wave that again and again reenters the
same anatomical region. Such reentry involving a single re-
entrant circuit typically leads to monomorphic ventricular
tachycardia. Ventricular tachycardia by itself can cause ex-
cessively rapid activation of the heart, potentially causing a
fatal reduction in the efficiency with which blood is pumped.
In addition, ventricular tachycardia may destabilize and
break up into the highly disorganized ventricular fibrillation,
where the pumping of blood is drastically and lethally re-
duced. Because of the risks of insufficient pumping associ-
ated with ventricular tachycardia, its termination is highly
important.

A simple model of ventricular tachycardia is a reentrant
wave traveling around a one-dimensional ring. In this model,
a single well-timed suprathreshold stimulus may terminate
the reentry. This happens when the stimulus induces a wave
which is blocked unidirectionally—i.e., it travels only in the
direction retrograde to the original reentrant wave because
the tissue in the anterograde direction is still refractory. The
retrograde wave and the original reentrant wave then collide
and mutually annihilate at the antipodal point on the ring.

The time interval in which a stimulus leads to termination
of the reentry is termed the vulnerable window (VW). If the
stimulus falls prior to the VW, the tissue around the stimulus
site is refractory and no waves are induced. If the stimulus is
given after the VW, two waves are generated, propagating in
opposite directions away from the stimulus site. The retro-
grade wave will collide with and annihilate the original
wave. However, the wave traveling in the anterograde direc-
tion will continue to circulate, replacing the original wave, so
that the reentry has been phase reset.

In general, phase resetting occurs when the dynamics of
an oscillator is shifted in time. This can be accomplished
when a stimulus transiently perturbs the state point away
from the stable limit cycle associated with the oscillation,
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followed by the asymptotic return of the state point to the
limit cycle. Say that a stimulus delivered to an oscillation at
a phase ¢ (the old phase) resets the oscillation to a new
phase g(¢). The function g(¢) is called the phase transition
curve. An important property of the phase transition curve is
the continuity theorem [1] (for more detail, please see the
Appendix). It states that if a stimulus of a given amplitude
delivered at any old phase of a limit-cycle oscillation leaves
the state point within the basin of attraction of that asymp-
totically stable limit cycle, then the phase transition curve
will be continuous for that stimulus amplitude. Similarly, if
the phase transition curve is truly discontinuous there must
be a stimulus phase (or range of phases) that will result in the
state point being perturbed outside of the basin of attraction
of the limit cycle. This is also true for spatially distributed
systems [2].

Thus, on the ring, the VW corresponds to a range of
phases of the stimulus timing for which termination occurs
because the state point is taken outside the basin of attraction
of the limit cycle and the phase transition curve is discon-
tinuous. Also, inversely, the presence of discontinuity in the
phase transition curve is predictive of reentry termination
[3]. However, when an implanted device attempts to termi-
nate reentry in a patient, the stimulus lead is not necessarily
located inside the reentrant circuit. Hence, a more realistic
“loop-and-tail model” can be used to study the effects of the
stimulus site being located outside the reentrant circuit. In
the loop-and-tail model, a tail has been added to a one-
dimensional ring, and the stimulus is injected at some loca-
tion on the tail. The phase transition curve is discontinuous
for such a model, predicting that termination of the reentry
should be possible for the right stimulus amplitude and tim-
ing [4]. However, attempts at terminating reentry in a homo-
geneous loop-and-tail model have been unsuccessful but did
not fully elucidate the reasons for such termination failure.
[5,6]. In this paper, we address this paradox and show why a
single stimulus cannot terminate reentry unless the tail is
very short.
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II. METHODS

Simulations were carried out using the Aliev-Panfilov ver-
sion of the FitzHugh-Nagumo model [7]. The Aliev-Panfilov
is a fairly generic model of excitable tissue, but it is modified
toward modeling cardiac tissue.

The model equations are

%:D%—ku(u—a)(w—l)—uv+l,
&—v— k 1 1
(%—e(u,v)[—v— u(u—a-1)], (1)

with ¢ measured in time units (t.u.) and x in space units (s.u.),
and where €(u,v)=¢€y+u v/ (U +u), €=0.002, 1,;=0.2, u,
=0.3, k=8.0, a=0.15, D=1 s.u.?/t.u., and [ is the injected
stimulus current (amplitude 30, duration 0.08 t.u.).

For numerical integration we used a finite-difference
method with a forward Euler scheme. The values of the tem-
poral and spatial step sizes were dx=0.5 s.u. and drt
=0.02 t.u. The loop was 100 s.u. long, as was the tail. The
stimulus site was varied systematically between different lo-
cations on the tail.

Phase resetting curves were computed at the stimulus site
by setting the fiducial point where the phase is zero to be the
crossing of 0.5 on the upstroke of u. The intrinsic cycle
length is denoted Ty, while 7}, j=1, gives the accumulated
time of j upstrokes following a stimulus given at a time ¢,
(the coupling interval; corresponds to the phase ¢=z./T,) in
the first cycle. Stimuli were applied after a few rotations of
the reentrant wave to let transients dissipate.

III. RESULTS
A. Resetting and termination in a loop model

The phase resetting curve' for the Aliev-Panfilov model
on a one-dimensional (1D) ring without a tail is shown in
Fig. 1(a). This curve is quite similar to that of the classic
FitzHugh-Nagumo model [3]. The curve has a discontinuous
gap for a range of stimulus timing values (0.288<1./T,
=0.327), where termination of the reentry occurs, due to
unidirectional conduction of the induced wave as described
above.

Extending the analysis of resetting in a ring without a tail
[3] to allow for a finite-sized VW, the phase resetting curves
are given by

Ty for0=t.<t,
T,=\9 fort,<t.<t,, (2)
(j—l)T0+tC for taStC<TO’

where @ indicates termination, and ¢, (z,) is the time at
which the tissue in the retrograde (anterograde) direction has

'"The phase resetting curve shows 7; as a function of 7. and is a
transformation of the phase transition curve. It is discontinuous at
the same phase or range of phases as the phase transition curve.
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FIG. 1. (Color online) Phase resetting curves for reentry on 1D
rings without (a) and with a tail (b) tail length 10 s.u. and (c) tail
length 2 s.u. Different colors indicate different values of j [j=1,
black; j=2, red (dark gray); j=3, orange (medium gray); j=4, yel-
low (light gray)]. Right: Closeups around discontinuities. In a loop
geometry without a tail (a) there is a discontinuous gap where there
is termination of reentry. When the stimulus is given at a distance of
10 s.u. down the tail (b), there is a jump discontinuity and we did
not see termination. When the stimulus is given closer to the loop
[at a distance of 2 s.u. down the tail (c)], there is again a discon-
tinuous gap where reentry is terminated. The intrinsic cycle length
(Ty) is slightly different in the loop geometry (75.88 t.u.) vs the
loop-and-tail geometry (77.34 t.u.).

come out of its refractory period and can sustain wave
plropagation.2 Notice that ¢t,—1,=VW.

B. Resetting and termination in a loop-and-tail model

When a tail is introduced to the ring and stimulating from
that tail, the dynamics change qualitatively. When a stimulus
is given at a distance of 10 s.u. away from the loop, the
phase resetting curve has a discontinuous jump (at 7./T
~(.283) as shown in Fig. 1(b).

There are well-known difficulties in determining whether
a phase resetting curve is truly discontinuous or merely very
steep, but continuous [8]. When we change 7. as finely as
0.02 t.u. (the integration time step), the discontinuity in the
phase resetting curve (and the phase transition curve) re-
mains. If the phase transition curve is truly discontinuous,
theory predicts that annihilation of the original reentrant
rhythm should occur at that point [3,4]. However, we did not
see such annihilation in our simulations. This apparent in-

Notice that we do not take into account the fact that for a range
of ¢, values (0.20-0.29 in the case of the loop), the stimulus induces
an upstroke large enough to cross threshold, but not large enough to
cause wave propagation in either direction. This effect causes
merely a shift in the counting of the waves (from T}, to T)) as seen
in Fig. 1, not a change in the wave dynamics.
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FIG. 2. Decrease in VW for increasing distance x; of the stimu-
lus site from the loop. Symbols and solid line, simulation results;
dashed line, simple model [Eq. (3)]. Inset shows the VW on an x
axis extended to the same length as the loop.

ability to terminate reentry in a loop-and-tail geometry has
been seen previously in similar model systems [5,6].

To investigate these paradoxical findings, we computed
the phase resetting response for a loop-and-tail geometry
with the stimulus site being very close (2 s.u.) to the loop.
The resulting curve is shown in Fig. 1(c). Indeed, this curve
has a range of ¢. values for which there is a discontinuous
gap (at 0.274=<1,/T,=0.278), and where reentry is termi-
nated, as predicted by theory.

By systematically varying the location of the stimulus site
along the tail, we have computed how the VW for termina-
tion depends on the distance of the stimulus from the loop.
The results are shown in Fig. 2. The VW decreases when the
stimulus is given further from the ring as seen in Fig. 1. For
stimulus sites located more than 3.5 s.u. away from the ring,
termination of reentry did not occur when changing 7. in
steps of 0.02 t.u.

A simple model explains this dependency of VW on
stimulus site: the VW is reduced by the sum of (1) the time
it takes the reentrant wave to travel up the tail to the stimulus
site and (2) the time it takes the stimulus-induced wave to
propagate down to the ring. Hence, assuming constant con-
duction velocity, the VW (W) varies as

Wix,) = Wy = 2x,/V, (3)

where V is the conduction velocity, x, is the distance from
the loop to the stimulus site, and W, is the VW at location
x,=0, i.e., on the loop. This result (shown as the dashed line
in Fig. 2) agrees very well with the simulation results.
Using this model, analytical expressions for the phase re-
setting curves are readily derived. We consider only situa-
tions where the tail is sufficiently short that no more than one
action potential at a time propagates up the tail during reen-
try (i.e., x, is smaller than the length of the loop). There are
then two general cases: one where x, is sufficiently short that
the stimulus-induced activation may reach the loop within
the VW; and one where x; is too large for this to occur.
For x,<(1/2)W,V,

Ty for0=1r.<t,
T~ %) fort, =1, <t.+2x,/V, (4)
(j_l)TO+tc f0r tr+ 2x5/VStC<T0.
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FIG. 3. (Color online) Termination of reentry in loop-and-tail
model with the stimulus site close to the loop, x,=2 s.u. The tail is
the upper part of each panel, with the red (gray) trace corresponding
to the loop-tail branch point. (a) No effect at 7,.=21.1 t.u. (b) Anni-
hilation at 7,=21.3 t.u. (c) Resetting at #.=21.5 t.u.

For x,=(1/2)W,V,

7 <
T~ ]?"0 forO=1.<t, 5)
(G-DTy+1. fort,=t.<T,.

Thus, when x, is small, the phase resetting curve ap-
proaches the curve for the loop model with a discontinuous
range of values that lead to termination. However, when x;
becomes larger than a certain critical value, x.=(1/2)V,V, a
jump discontinuity is predicted. In the following, we inves-
tigate the dynamics around this jump discontinuity.

C. Resetting discontinuities and termination
in the loop-and-tail model

We showed above that when the stimulus site is close to
the ring, e.g., at 2 s.u., the phase resetting curve has a dis-
continuous gap [Fig. 1(c)], and it is indeed possible to termi-
nate the reentry. The mechanism for termination is similar to
that in a ring without a tail: a stimulus given inside the VW
[at 7,=21.3 tu. (¢,/Ty=0.275) in Fig. 3(b)] induces a wave
that travels down the tail to the loop where it is blocked
unidirectionally so that it travels only in the direction retro-
grade to the original reentry. The stimulus-induced wave
then collides with and terminates the original reentrant wave
around the antipodal point on the loop [Fig. 3(b)].

A stimulus given earlier [at z,=21.1 t.u. (1./T,=0.273) in
Fig. 3(a)] falls in the refractory period of the previous wave
traveling up the tail from the loop and has no effect on the
reentrant activity. On the other hand, a stimulus given later
[at 7,=21.5 tu. (¢t,/Ty=0.278) in Fig. 3(c)] induces a wave
that travels down the tail to the loop, where it propagates in
both directions. The stimulus-induced wave traveling in the
retrograde direction collides with and annihilates the original
reentrant wave, but the stimulus-induced wave traveling in
the anterograde direction persists so that there is still reentry
on the loop [Fig. 3(c)], albeit at a reset timing.
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FIG. 4. (Color online) (a) No termination of reentry in the loop-
and-tail model when the stimulus site is located further away, x;
=10 s.u. The tail is the upper part of each panel, with the red (gray)
trace corresponding to the loop-tail branch point. Right panels show
closeups of the dynamics on the tail. No effect at 7,=21.88 t.u.
because the action potential is not able to propagate down to the
ring. (b) Resetting at 7,=21.90 t.u., the action potential does propa-
gate down to the loop.

When the stimulus site is further away, e.g., at 10 s.u., our
simple model predicts a direct transition from no effect to
phase resetting [Eq. (5)]. This is shown in Fig. 4: at 1,
=21.88 t.u. (¢.,/Ty=0.2832), there is no effect of the stimu-
lus, while at £,=21.90 tu. (¢,/T;~0.2833), there is phase
resetting, since the VW is over. A closeup of the activity on
the tail reveals the mechanism of the transition: the action
potential induced at 7,.=21.88 t.u. does not propagate all the
way down to the ring, while the action potential induced
0.02 t.u. later does. Thus, the discontinuity originates not on
the ring, but on the tail. This discontinuity persists when
changing 7, in steps as small as 107 t.u. However, we saw
no termination of reentry, which presents a paradoxical dis-
agreement between the predictions of the topological ap-
proach [1,2,9] vs the simple model [Eq. (5)] and the simula-
tions.

IV. DISCUSSION

We have shown here that termination of reentry is pos-
sible in a loop-and-tail geometry for tail lengths below a
certain critical value x,. In this case, the VW for termination
coincides with a discontinuous window in the phase resetting
curve. In contrast, when the stimulus site is further away
from the loop, there is a point discontinuity in the phase
resetting response, yet we saw no termination of the reentrant
activity.

This paradox would be resolved if the discontinuity in the
phase resetting curve [Fig. 1(b)] disappeared when the stimu-
lus timing 7, was changed in smaller steps. However,
FitzHugh-Nagumo models in 1D geometries have two propa-
gating solutions for sufficiently long recovery time: one
stable solution with relatively fast propagation speed and one
unstable solution with slower propagation speed [10]. At a
certain critical recovery time, these two solutions coalesce at
a limit point, and for shorter recovery time, no propagating
solutions exists. The discontinuity in our simulations thus
occurs when the recovery time ahead of the wave drops be-
low the minimum value required to sustain propagation.
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Hence, the discontinuity in the resetting response is real in
the sense that it does not disappear if 7. is varied more
finely—propagation is a true all-or-none phenomenon.

Another possible resolution is that the topological ap-
proach is not valid for the quasi-1D geometry of the loop-
and-tail model. Although the results shown in the right-hand
panels of Fig. 4 suggest this, numerically, the partial differ-
ential equation is represented as many coupled ordinary dif-
ferential equations, for which the topological approach
should be valid.

Using our simple model [Eq. (3)], we found that the criti-
cal tail length for which termination due to a single stimulus
can occur is about 2 s.u. In a physical cardiac system the
VW for annihilation due to unidirectional block is on the
order of 1-2 ms [11,12], although there may be considerable
variation between species, anatomical regions, etc. Using a
typical value for the conduction velocity of 50 cm/s, we can
estimate the critical tail length as x.=(1/2)W,V=(1/2)
X1 msX50 cm/s=0.03 cm, which is obviously a very
short distance on the centimeter scale of the heart. This
agrees with clinical findings that termination of reentry by a
single stimulus is a very rare event. It is of interest that
simulations have shown that the VW may increase due to
intrinsic heterogeneity in conduction [5,6], or due to dy-
namic instability which develops when giving a pair [12] or
a train of stimuli [13]. Additionally, the critical length may
be altered in ischemic or diseased hearts, conditions during
which arrhythmias and termination attempts often occur.
These conditions are often associated with uncoupling of the
tissue. Such uncoupling may be simulated by reducing the
diffusion constant. Decreasing the diffusion constant by a
factor of 2 and 4 reduces the conduction velocity by a factor
of V2 and 2, respectively (results not shown). However, in
our simulations, such uncoupling also increases the VW by a
factor of 1.3 and 1.7, respectively. Hence, in this model, the
critical tail length is slightly reduced by uncoupling.

We have focused here on a very simple loop-and-tail
model of reentry. In the heart, reentry may also occur in the
form of spiral waves, which may or may not be pinned to
obstacles. In the case of a pinned spiral wave, the reentrant
activity may be terminated by application of an electric field
which unpins the spiral wave so that it may subsequently
drift away [14,15]. Future investigations may focus on theo-
retical as well as practical aspects of such termination.

Our main conclusion is that discontinuity in phase reset-
ting is indicative of reentry termination in a loop-and-tail
geometry only when the stimulus site is very close to the
reentrant loop. This in turn questions the extent to which
antitachycardia pacing in more complex geometries is ame-
nable to simple analyses based on phase resetting.
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APPENDIX: DISCONTINUITY IN PHASE RESETTING

In this appendix we give an illustration of the continuity
theorem.
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FIG. 5. (a) Schematic of phase resetting experiment. (b) Isoch-
rons and shifted cycle for type-1 resetting. (c) Phase transition
curve for type-1 resetting. (d) Isochrons and shifted cycle for type-0
resetting. (e) Phase transition curve for type-0 resetting.

Figure 5(a) shows a schematic illustration of a phase re-
setting experiment. We consider for simplicity a two-
dimensional system with an asymptotically stable limit cycle
(black oval) and an unstable fixed point (cross) (as done in
[16]). The unstable fixed point is the only point outside the
basin of attraction of the stable limit cycle.

A stimulus is injected when the state point is at point a on
the stable limit cycle (the old phase). The effect of this
stimulus is to deliver the state point to point b. Because this
location is within the basin of attraction of the stable limit
cycle, the state point eventually returns to the limit cycle,
albeit at a different (reset) phase. Say that this phase (the new
phase) is B; point b is then said to lie on the 8 W isochron
[9]. In a system of continuous differential equations, there
exists a locus in the vicinity of point b, with the property that
a state point delivered to any one of those points results in
the same new phase, i.e., they are on the same W isochron as

PHYSICAL REVIEW E 77, 011916 (2008)

b. Notice that this 8 W isochron must cross the limit cycle at
a phase of .

Figure 5(b) shows examples of W isochrons (there is an
infinity of these corresponding to all the possible new
phases). The dashed curve in Fig. 5(b) shows the so-called
shifted cycle. This curve is the locus of state points at the end
of a stimulus for any old phase. Figure 5(c) shows the cor-
responding phase transition curve. A phase transition curve
can be characterized topologically by its winding number,
i.e., the number of times that g(¢) wraps around the unit
circle as ¢ goes around the circle once. In Fig. 5(c) the
winding number or topological degree is 1. Indeed, for weak
stimuli, g(¢) = ¢ by continuity, such that all points fall close
to the diagonal and the winding number is 1.

In many instances, for stronger stimuli the topological
degree is 0 [9]. Such an example is shown in Fig. 5(e), while
Fig. 5(d) shows the corresponding shifted cycle. Unlike
degree-1 resetting, where the shifted cycle intersects all the
W isochrons, if the stimulus is of sufficiently strong ampli-
tude to move the shifted cycle to a location where it no
longer intersects all W isochrons, degree-0 resetting will oc-
cur. Thus for degree-0 resetting there is a gap in the phase
transition curve, consisting of new phases that are unattain-
able because their W isochrons are not intersected by the
shifted cycle. The curve is still continuous however, as the
phase is defined using modulus 1.

If the topological degree is 1 for weak stimuli and O for
strong stimuli, then there must be an intermediate strength
(or range of strengths) that results in the state point being
perturbed to a location outside the basin of attraction of the
stable limit cycle. In this example, this happens when the
shifted cycle intersects the unstable fixed point within the
stable limit cycle. Recall that this unstable fixed point is
outside the basin of attraction of the stable limit cycle.
Hence, for the old phase corresponding to that intersection,
the oscillation is abolished, the new phase is undefined, and
the phase transition curve discontinuous, illustrating the con-
tinuity theorem.
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